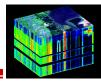


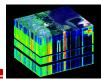
Imaging Spectroscopy Technology Investments

Paving the Way for Low-Cost, High-Quality Sensor Systems for NASA Code Y Science Programs


Robert O. Green
David A. Thomas
Jet Propulsion Laboratory

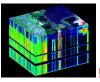
May 1999

p. 1 May 1999


Topics

- Objective and Overview of Briefing
- Code Y Science Objectives
- Measurement Requirements
- Today's State-of-Practice
- Required Technologies Some Examples
- Summary

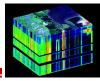
Objective and Overview of Briefing



Objective

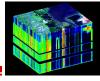
- Present rationale for technology investment
- Preview a few key candidate technologies

Objective and Overview of Briefing

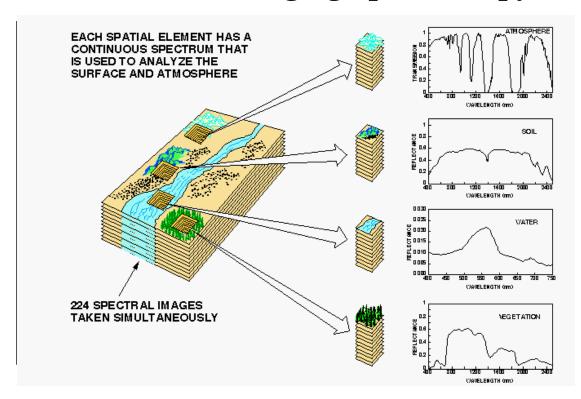

Overview

- NASA Imaging Spectroscopy has reached a unique juncture because sufficient information now exists for:
 - Code Y to quantify its Science Requirements
 - JPL to quantify corresponding Measurement and Engineering Requirements
- Assessment of today's State-of-Practice (SoP) Imaging Spectrometers reveals that:
 - Those with nominal performance are too large to fly in space (e.g., AVIRIS)
 - Those being built to fly in space do not meet the performance requirements
 - Nominal performance with today's SoP would be very large and expensive

We will show that a modest investment in advanced technology can bridge the gap between high performance and low cost

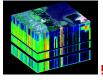


Code Y Science Objectives and Measurement Requirements

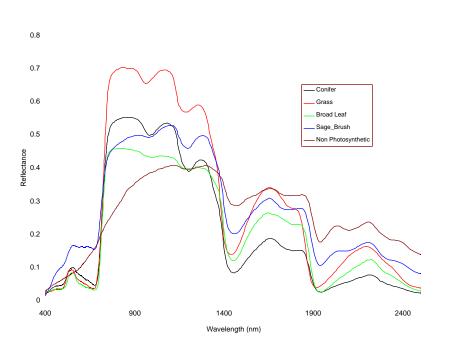

Robert O. Green

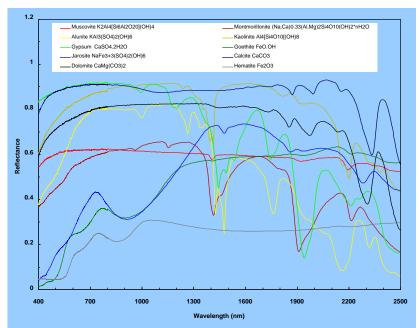
Code Y Science Objectives

Overview of Imaging Spectroscopy



Imaging Spectroscopy enables direct identification of most earth surface materials of interest through their unique spectral signatures

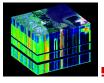

p. 6 May 1999



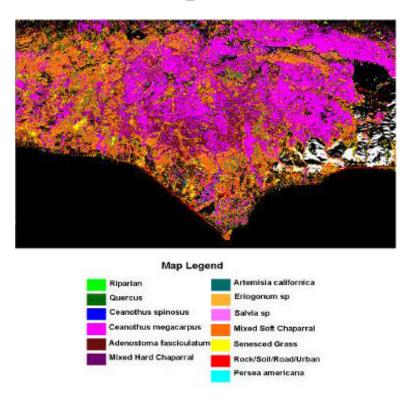
Code Y Science Objectives

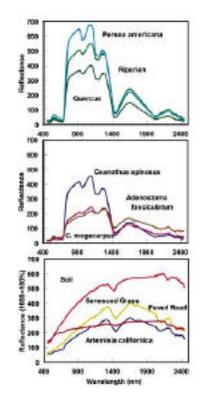
Examples of Key Plant and Mineral Spectra

Vegetation Spectra


Soil and Rock Mineral Spectra

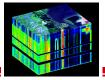
The detailed structure of these spectra are the key to material identification


p. 7 May 1999

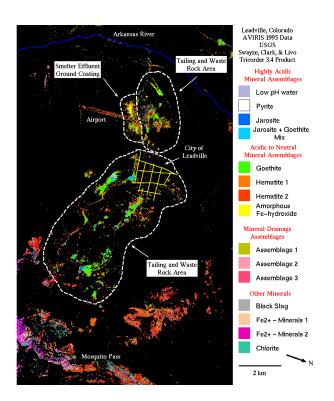


Code Y Science Objectives

Santa Monica Mountains Vegetation Species Map: An Example of the Power of Imaging Spectroscopy



Plant
spectra
derived
from
AVIRIS
data

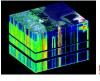

AVIRIS data allowed a more accurate mapping than years of work on the ground

Code Y Science Objectives

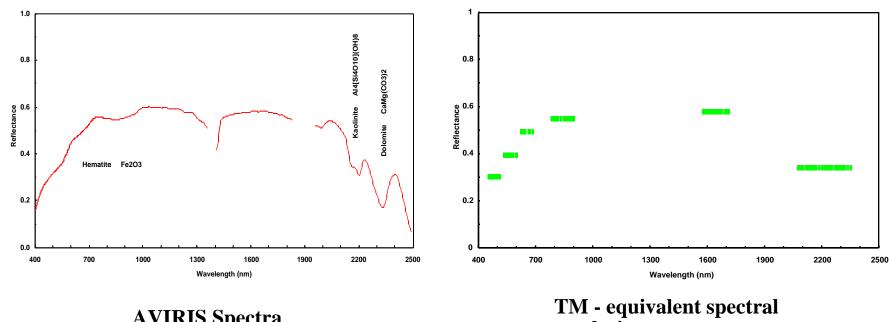
Leadville, Colorado Hazardous Waste Map

Mineral Map Derived Directly from AVIRIS data

- Leadville was site of unregulated mining since the 1800s
- Acid-generating minerals left at surface at unknown locations
- AVIRIS data used to map these minerals
- "Use of AVIRIS data has provided an estimated \$2M savings...and shortening of the site investigation process by an estimated 2 1/2 years."


Letter to Bill Townsend from the Assistant Regional Adminstrator, EPA, 2/27/97

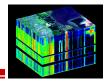
Subtle, diagnostic features in the soil mineral spectra allowed AVIRIS mapping in a fraction of the time, at a fraction of the cost


p. 9 May 1999

Code Y Science Objectives

Why It Can't Be Done with Multispectral Imaging

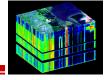
AVIRIS Spectra


resolution

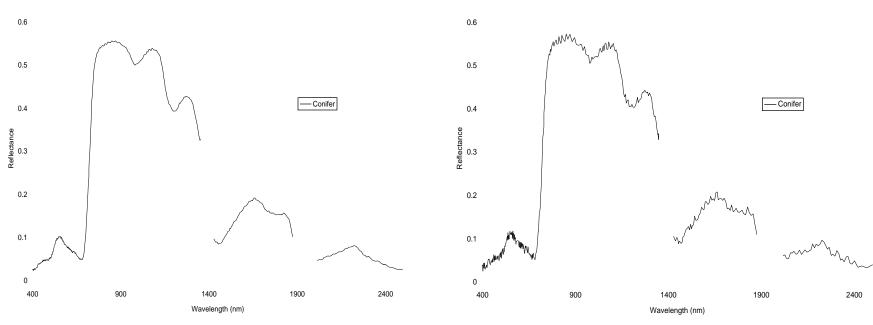
The lack of spectral specificity at TM-equivalent spectral resolution results in greatly degraded material mapping capability

> May 1999 p. 10

Measurement Requirements

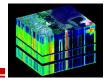

Key Data Parameters That Affect Ability to Map Material of Interest

- Signal-to-Noise Ratio (SNR)
 - High performance required to detect key spectral features
- Spectral purity: No spectral smile!
 - An artifact of earlier spectrometer design, mixes spectral content across focal plane array
- Spatial resolution
 - $-\,$ 30m ground IFOV adequate for most science needs, $\underline{\text{If}}\,\text{SNR}$ and spectral purity are adequate
- Atmospheric correction
 - H₂O is ubiquitous, temporally and spatially vaiable, and masks many key spectral features
- Calibration
 - High precision spectral and radiometric calibration required for atmospheric correction and surface material spectral feature extraction

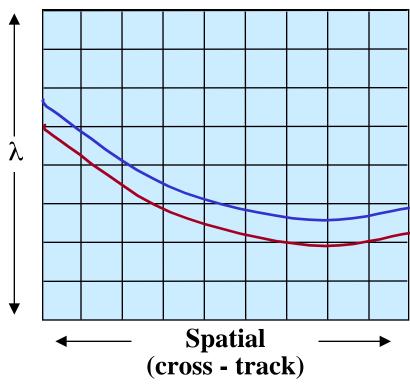

p. 11 May 1999

Measurement Requirements

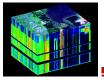
Signal-to-Noise (SNR)

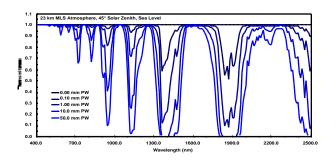

Vegetation spectrum at nominal AVIRIS SNR

Simulated spectrum at 1/10 AVIRIS SNR


Low SNR masks the key spectral features of interest, which become buried in the noise

Measurement Requirements

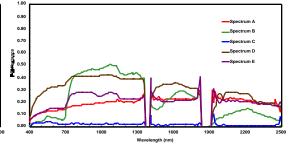

Spectral Purity: Smile


- Spectral "smile" is an artifact of previous grating spectrometer designs using 2-D focal plane arrays
- Effect greatly degrades data quality by mixing spectral and spatial information
- Maximum allowable spectral smile <1/10 pixel to meet Code Y science objectives

Measurement Requirements

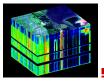
Atmospheric H₂O Vapor Correction

H₂O vapor affects the entire solar reflected spectral region

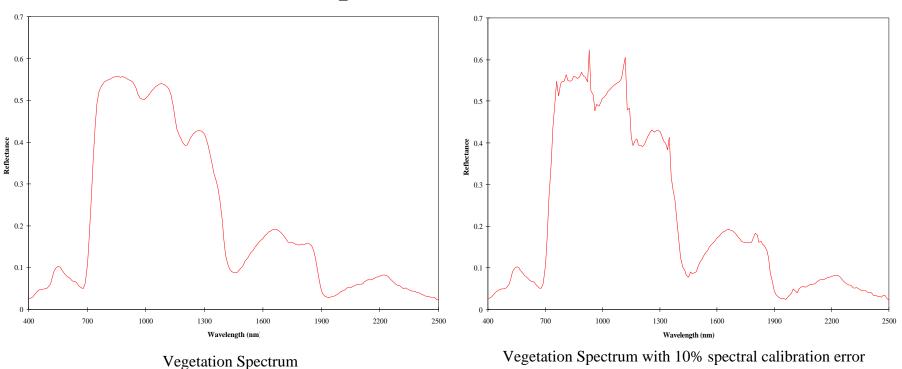


20.00
18.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00

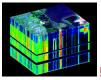
PASADENA WATER VAPOR

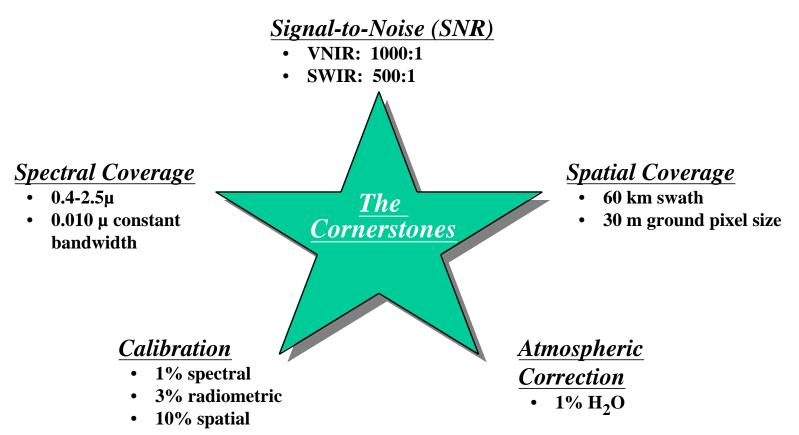

DERIVED REFLECTANCE SPECTRA

Extraction of true surface reflectance spectra requires meticulous correction for H_2O vapor using information from within the imaging spectrometer date themselves


p. 14 May 1999

Measurement Requirements

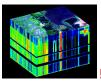

Spectral Calibration


Poor spectral calibration distorts the apparent positions of key spectral features, introduces unacceptible error in data reduction

Measurement Requirements

In Quantitative Terms:

Derived from Almost a Decade of Research with High-quality AVIRIS Data



Today's State-of-Practice (SOP) and Examples of a Few Enabling Technologies

David A. Thomas

Today's State-of-Practice

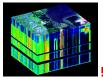
- Operational
- Optimum performance

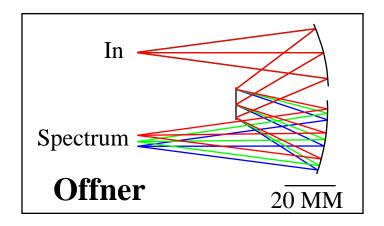
(airborne)

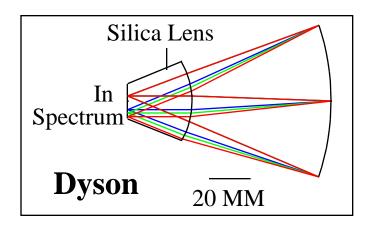
• High mass (350 kg)

Hyperion (spaceborne)

- Under development
- Low SNR (~100:1)
- Moderate mass (50kg)

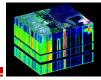

- Under development
- Low SNR (~300:1)
- Moderate mass (70kg)


Current spaceborne Imaging Spectrometers will not have the performance needed to meet the Code Y science objectives


p. 18 May 1999

Compact Spectrometer Design Forms

Advantages of both designs:


- Smaller than classical forms (3x to 5x)
- Higher performance (wider slits, zero distortion)
- Cheaper to fabricate

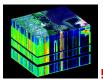
Smaller, cheaper, better spectrometers are enabled by new diffraction grating designs

p. 19 May 1999

New Diffraction Grating Technology

e-beam grating for New Millenium EO-1 Mission

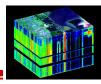
Advantages

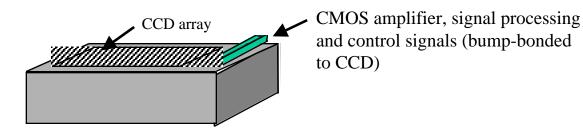

- Low scattered light
- High optical throughput
- Excellent image quality

New fabrication techniques allow new spectrometer designs to be built inexpensively

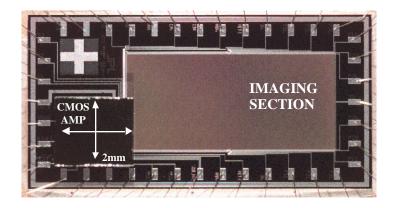
p. 20 May 1999

New Low-Noise, Low-Power Detectors


Hybrid Imaging Technology (HIT) CCDs


- Combines the best of two advanced technologies:
 - Charge-Coupled Devices (CCD) for SOA low-noise performance
 - CMOS VLSI Technology, for low-power, on-chip electronics
 - CMOS amplifier, signal processing package bump-bonded to CCD
 - Same approach can be used with IR detectors
- Product description:
 - Photon detection rivaling CCDs
 - Power <25 mW</p>
 - Response linearity >99.6%
 - Radiation tolerance >2 Mrads
 - On-chip ADC 12 bits or greater

On-chip ADC enables reduction in *system* noise of 2-5x compared to conventional technology, yielding much higher *system* SNR


p. 21 May 1999

HIT CCD System Architecture

HIT-1 256 x 512 Prototype Sensor (built in 1998)

Images Obtained From HIT-1 Detector

3000 e

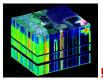
50 e -

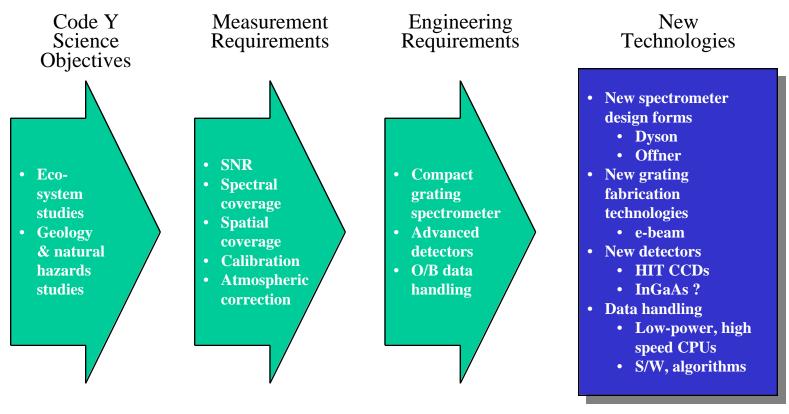
- 50 e- in Brightest Portion of Scene
- No Background Subtraction
- No Image Post Processing
- T = 40 C Operation
- CTE > 0.99999
- 25 kilopixels/sec Data Rate
- 4.8 e- RMS Read Noise Floor
- < 100 Microwatts Power Dissipation

- 3000 e- in Brightest Portion of Scene
- No Background Subtraction
- No Image Post Processing
- T = 0 C Operation
- CTE > 0.99999
- 25 kilopixels/sec Data Rate
- 4.8 e- RMS Read Noise Floor
- < 100 Microwatts Power Dissipation

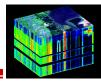
HIT-1 Establishes New State-of-the-Art for Imaging Technology

p. 23 May 1999




Summary

Summary


Requirements Flow-Down Leads to Requirements for New Technologies

p. 25 May 1999

Conclusion

- A modest technology investment will enable significant improvement in performance AND reduction in mass/cost of future spaceborne imaging spectrometers
- Next steps:
 - Develop technology roadmap with industry and NASA partners
 - Initialize investments right away in already-identified highpayoff technologies such as optics and detectors